Harnessing the potential of LPMO-containing cellulase cocktails poses new demands on processing conditions.
نویسندگان
چکیده
BACKGROUND The emerging bioeconomy depends on improved methods for processing of lignocellulosic biomass to fuels and chemicals. Saccharification of lignocellulose to fermentable sugars is a key step in this regard where enzymatic catalysis plays an important role and is a major cost driver. Traditionally, enzyme cocktails for the conversion of cellulose to fermentable sugars mainly consisted of hydrolytic cellulases. However, the recent discovery of lytic polysaccharide monooxygenases (LPMOs), which cleave cellulose using molecular oxygen and an electron donor, has provided new tools for biomass saccharification. RESULTS Current commercial enzyme cocktails contain LPMOs, which, considering the unique properties of these enzymes, may change optimal processing conditions. Here, we show that such modern cellulase cocktails release up to 60 % more glucose from a pretreated lignocellulosic substrate under aerobic conditions compared to anaerobic conditions. This higher yield correlates with the accumulation of oxidized products, which is a signature of LPMO activity. Spiking traditional cellulase cocktails with LPMOs led to increased saccharification yields, but only under aerobic conditions. LPMO activity on pure cellulose depended on the addition of an external electron donor, whereas this was not required for LPMO activity on lignocellulose. CONCLUSIONS In this study, we demonstrate a direct correlation between saccharification yield and LPMO activity of commercial enzyme cocktails. Importantly, we show that the LPMO contribution to overall efficiency may be large if process conditions are adapted to the key determinants of LPMO activity, namely the presence of electron donors and molecular oxygen. Thus, the advent of LPMOs has a great potential, but requires rethinking of industrial bioprocessing procedures.
منابع مشابه
Enzymatic degradation of sulfite-pulped softwoods and the role of LPMOs
BACKGROUND Recent advances in the development of enzyme cocktails for degradation of lignocellulosic biomass, especially the discovery of lytic polysaccharide monooxygenases (LPMOs), have opened new perspectives for process design and optimization. Softwood biomass is an abundant resource in many parts of the world, including Scandinavia, but efficient pretreatment and subsequent enzymatic hydr...
متن کاملReal-time imaging reveals that lytic polysaccharide monooxygenase promotes cellulase activity by increasing cellulose accessibility
Background The high cost of enzymes is one of the key technical barriers that must be overcome to realize the economical production of biofuels and biomaterials from biomass. Supplementation of enzyme cocktails with lytic polysaccharide monooxygenase (LPMO) can increase the efficiency of these cellulase mixtures for biomass conversion. The previous studies have revealed that LPMOs cleave polysa...
متن کاملThe yeast Geotrichum candidum encodes functional lytic polysaccharide monooxygenases
BACKGROUND Lytic polysaccharide monooxygenases (LPMOs) are a class of powerful oxidative enzymes that have revolutionized our understanding of lignocellulose degradation. Fungal LPMOs of the AA9 family target cellulose and hemicelluloses. AA9 LPMO-coding genes have been identified across a wide range of fungal saprotrophs (Ascomycotina, Basidiomycotina, etc.), but so far they have not been foun...
متن کاملUsing an Inducible Promoter of a Gene Encoding Penicillium verruculosum Glucoamylase for Production of Enzyme Preparations with Enhanced Cellulase Performance
BACKGROUND Penicillium verruculosum is an efficient producer of highly active cellulase multienzyme system. One of the approaches for enhancing cellulase performance in hydrolysis of cellulosic substrates is to enrich the reaction system with β -glucosidase and/or accessory enzymes, such as lytic polysaccharide monooxygenases (LPMO) displaying a synergism with cellulases. RESULTS Genes bglI, ...
متن کاملManagement of enzyme diversity in high-performance cellulolytic cocktails
BACKGROUND Modern biorefineries require enzymatic cocktails of improved efficiency to generate fermentable sugars from lignocellulosic biomass. Cellulolytic fungi, among other microorganisms, have demonstrated the highest potential in terms of enzymatic productivity, complexity and efficiency. On the other hand, under cellulolytic-inducing conditions, they often produce a considerable diversity...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biotechnology for biofuels
دوره 8 شماره
صفحات -
تاریخ انتشار 2015